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Abstract
We provide a rigorous strategy to find the critical exponents of the overlaps
for dilute spin glasses, in the absence of an external field. Such a strategy is
based on the expansion of a suitably perturbed average of the overlaps, which
is used in the formulation of the free energy as the difference between a cavity
part and the derivative of the free energy itself, considered as a function of
the connectivity of the model. We assume the validity of certain reasonable
approximations, equivalent to assuming a second-order transition, e.g. that
higher powers of overlap monomials are of smaller magnitude near the critical
point, of which we do not provide a rigorous proof.

PACS numbers: 75.10.Nr, 64.60.Fr, 64.60.Cn

1. Introduction

Dilute spin glasses are important due to at least two reasons. Despite their mean-field nature,
they share with finite-dimensional models the fact that each spin interacts with a finite number
of other spins. Secondly, they are mathematically equivalent to some random optimization
problems. The stereotypical model of dilute spin glasses is the Viana–Bray model [11, 13],
which is equivalent to the random X-OR-SAT optimization problem in computer science, and
the model we use as a guiding example here. In the original paper [13] the equilibrium of
the model was studied, even in the presence of an external field, but the critical behavior was
not obtained. In fact, the replica trick used in [13] only allows us to find, in a non-rigorous
way, the critical point of the overlap between two replicas. It does not provide information
about the critical exponents, and suggests wrong critical points for overlaps among several
replicas. In the case of fully connected Gaussian models, the critical exponents were computed
in a recent mathematical study [1]. Here, we use the techniques developed in [4] for finite
connectivity spin glasses to extend the methodology of [1] to the case of dilute spin glasses:
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using rigorous techniques we find that there is only one critical point for all overlaps and
we compute the critical exponents of the overlaps among any number of replicas (whose
distributions constitute the order parameter of the model [5, 8, 12]). Let us emphasize though
that, roughly speaking, we do not prove for instance the statement ‘the critical exponent of
the (squared) overlap is two’. In fact, we do not prove that the overlap is continuous and we
only assume it. Therefore what we prove is, roughly speaking, that ‘if the (squared) overlap
is continuous then its critical exponent is two.’ This does not mean that our procedure is not
rigorous, such as those procedures based for instance on replica methods or other possible
approximations; it only means that we prove a weaker claim.

2. Model and notations

Given N points and families {iν, jν, kν} of i.i.d random variables uniformly distributed on
these points, the (random) Hamiltonian of the Viana–Bray model is defined on Ising N-spin
configurations σ = (σ1, . . . , σN) through

HN(σ, α) = −
PαN∑
ν=1

Jνσiν σjν

where Pζ is a Poisson random variable with mean ζ , {Jν = ±1} are i.i.d. symmetric random
variables and α > 1/2 is the connectivity. The expectation with respect to all the (quenched)
random variables defined so far will be denoted by E, while the Gibbs expectation at inverse
temperature β with respect to this Hamiltonian will be denoted by �, and depends clearly on
α and β. We also define 〈·〉 = E�(·). The pressure, i.e. minus β times the free energy, is by
definition

AN(α) = 1

N
E ln

∑
σ

exp(−βHN(σ, α)).

When we omit the dependence on N we mean to have taken the thermodynamic limit. The
quantities encoding the thermodynamic properties of the model are the overlaps, which are
defined on several configurations (replicas) σ (1), . . . , σ (n) by

q1···n = 1

N

N∑
i=1

σ
(1)
i · · · σ (n)

i .

When dealing with several replicas, the Gibbs measure is simply the product measure, with the
same realization of the quenched variables, but the expectation E destroys the factorization.
We define βc as the inverse temperature such that 2α tanh2 βc = 1.

3. Previous results

We report here some known results which will be needed in the remainder of the paper.
We refer to [4] for more information about the content of this section, but we report in the
appendix some of the basic ideas that lead to the study of the stability of the system under
certain stochastic perturbations we are about to introduce.

We are going to need the cavity function given by

ψN(α′, α) = E ln

{
�

[
exp

(
β

P2α′∑
ν=1

J ′
νσkν

)]}

2
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where the quenched variables appearing explicitly in this expression are independent copies of
those in �. When the perturbation

∑P2α′ t
ν=1 J ′

νσkν
is added to the Hamiltonian, the corresponding

Boltzmann factor will give place to Gibbs and quenched expectations denoted by �′
t (·), 〈·〉′t ,

and the subindex t is simply omitted when t = 1. This perturbation, appearing in ψ , when
α′ = α, is equivalent to the addition of a new spin to the system; we refer to [4] for detailed
explanations, which are summarized in the appendix anyway. The parameter t therefore allows
us to interpolate between a system of N spins and one of N + 1 spins, when α′ = α; the case of
generic α′ �= α is only employed to have an independent variable without using t, whenever
this is convenient to shorten the expressions. A consequence of the response of the system
to the perturbation introduced, studied in [4] and reported in the appendix, is that monomials
such that each replica appears an even number of times in them are stochastically stable: their
average does not depend on the perturbation in the thermodynamic limit. The other overlap
monomials are not stochastically stable, but their perturbed average can be expressed in terms
of a power series in t, with (t-independent) stochastically stable (or invariant) averaged overlap
polynomials as coefficients, in the thermodynamic limit. This is done by an iterative use of
the following proposition, proven in [4].

Proposition 1. Let � be a function of s replicas. Then the following cavity streaming equation
holds

d〈�〉′t
dt

= −2α′〈�〉′t + 2α′
E

[
�′

t�

{
1 + J

1,s∑
a

σ
(a)
i1

θ

+
1,s∑
a<b

σ
(a)
i1

σ
(b)
i1

θ2 + J

1,s∑
a<b<c

σ
(a)
i1

σ
(b)
i1

σ
(c)
i1

θ3 + · · ·
}

×
{

1 − sJ θω +
s(s + 1)

2!
θ2ω2 − s(s + 1)(s + 2)

3!
Jθ3ω3 + · · ·

}]
(1)

where ω = �′
t (σi1), θ = tanh β.

In the following section we will consider explicitly our case of interest: that of � = q1···2n.

4. The expansion

Let � = q12, q1234, . . .. On the right-hand side of (1), consisting of the product of two
factors in which each term brings a new overlap multiplying �, there is only one spin-flip
invariant overlap: q2

1···2n. But for the other terms we can use again the streaming equation,
and each non-invariant overlap will be multiplied by a suitable overlap so that the number of
replicas appearing an odd number of times decreases (by two). Integrating back in dt once the
thermodynamic limit is taken, one can easily obtain

〈q12〉′t = τ ′t
〈
q2

12

〉 − 2τ ′2t2〈q12q23q31〉 + O(q4) (2)

...

〈q1···2n〉′t = τ ′θ2n−2t
〈
q2

1···2n

〉
+ t2O(q3) + · · · (3)

where τ ′ = 2α′θ2 = 2α′ tanh2 β and we neglected monomials with the products of at least
four overlaps. As an example, we gave the explicit form of the monomial of order three
for n = 2. These expansions will be used to expand ψ in terms of averaged stable overlap

3
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monomials. If we take t = 1 and let β be very close to βc, we know [4] that we can replace
〈q12〉′ by

〈
q2

12

〉
, on the left-hand side of (2). This provides a relation, valid at least sufficiently

close to the critical temperature, between
〈
q2

12

〉
and 〈q12q23q31〉, as we neglect the higher-order

monomials in (2):

(τ − 1)
〈
q2

12

〉 = 2〈q12q23q31〉 (4)

with τ = 2αθ2 = 2α tanh2 β. Note incidentally that this relation is compatible with the
well-known fact [10] that the fluctuations of the rescaled overlap Nq2

12 diverge only when
τ → 1 (and not at higher temperatures), being N〈q12q23q31〉 small (due to the central limit
theorem) as is the sum of N3 bounded variables dived by N2 instead of N3/2.

5. Orders of magnitude

In the expansions of the previous section, we need to understand which terms are small near
the critical point. We know that above the critical temperature all the overlaps are zero, and
that those which are not zero by symmetry become non-zero below the critical temperature;
therefore we assume that slightly below such a temperature the overlaps are very small. More
precisely, we know that for instance〈

q2
12

〉 = E �2(σi1σi2)

is very small, and so is therefore �2(σi1σi2). This means that for temperatures sufficiently
close to the critical one �4(σi1σi2) is negligible as compared to �2(σi1σi2). In other words,〈
q2

1234

〉
is assumed to be of a smaller order of magnitude than

〈
q2

12

〉
. Furthermore, if q2

12 is
small q4

12 has to be of an even smaller order of magnitude. In fact we reasonably assume that〈
q4

12

〉 = E �2(σi1σi2σi3σi4), which is of order two in �, is of a smaller order than
〈
q2

12

〉
, which

is also of order two in �. An explanation comes from the self-averaging discussed in [6],
which tells us that E�(σi1σi2σi3σi4) is of the same order as E�(σi1σi2)�(σi3σi4), which is of
order two in �, and hence increasing the number of spins in the expectation � is basically
equivalent to increasing the order in �. This is actually proven in a perturbed system [6],
but it is reasonable to assume that the consequences of self-averaging (not the self-averaging
itself) on the orders of magnitude of the considered quantities is not lost when the perturbation
is removed, and the monomials we have are the result of the streaming equation, in which
the measure is perturbed. Consistently, (4) implies that near the critical point〈q12q23q31〉 is
smaller than

〈
q2

12

〉
, and the two critical exponents differ by one. All these observations lead to

the following criterion, basically equivalent to assuming a second-order transition. We define
the degree of an averaged overlap monomial as the sum of the degrees of each overlap in
it, where the degree of an overlap is its exponent times its number of replicas. For instance〈
q2

1234q
2
12q

2
34

〉
is of order 4 × 2 + 2 × 2 + 2 × 2 = 16. The definition we just gave coincides with

the one that can be given in terms of � expectations, provided one multiplies the exponent
of each � expectation by the number of randomly chosen spins appearing in it. For example〈
q2

1234q
2
12q

2
34

〉 = E �2(σi1σi2σi3σi4)�
2(σi1σi2σi5σi6) is of order 2 × 4 + 2 × 4 = 16. Given

an integer m, a monomial of order 2m + 2 will be considered negligible, near the critical
point—where all overlaps are very small, with respect to a monomial of order 2m.

6. The transition

It is well known that all the overlaps are zero above the critical temperature 1/βc where the
replica symmetric solution holds, and that below this temperature the overlap between two
replicas fluctuates and its square becomes non-zero identifying a replica symmetry breaking.

4
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A detailed rigorous study of the fact that the critical temperature of the model is determined
by the equation 2α tanh2 βc = 1 was performed in [10]. In the same article, the reader can
find a description of the breaking of replica symmetry occurring at all temperatures lower
than the critical one, emerging as the loss of self-averaging of the overlap. As pointed out in
[13], the use of the replica trick within a quadratic approximation can only provide the correct
transition for the overlap between two replicas, while overlaps of more replicas would seem to
be zero down to lower temperatures before starting fluctuating. Moreover within that method
no information about the critical exponents was found. Our method allows us to compute the
critical exponent of the overlap between two replicas and to gain information about the critical
point and critical exponents of all overlap monomials. Let us start by showing that there is
only one critical point for all overlap monomials.

By convexity, we have〈
q2

1···2n

〉 = E�2n(σi1σi2) � (E �2(σi1σi2))
n = 〈

q2
12

〉n
so that all overlaps are non-zero whenever

〈
q2

12

〉
is, i.e. below the critical temperature

1/βc. As a further example, a slightly more accurate use of convexity yields immediately〈
q2

1234

〉
� 〈q2

12q
2
34〉 � 〈q12〉2. This means that the critical exponents of q2

1234 and q2
12q

2
34 cannot

be larger than twice the critical exponent of q2
12, but cannot be smaller than this critical

exponent itself either, as
〈
q2

1234

〉
�

〈
q2

12

〉
.

7. Critical exponents

We will now relate the free energy to its derivative and to the cavity function. The following
theorem follows easily from the results of [5], and here we only sketch the proof, based on
standard convexity arguments.

Theorem 1. In the thermodynamic limit, we have

A(α) = ln 2 + ψ(α, α) − αA′(α)

for all values of α, β, where A′ is the derivative of A.

Proof. sketched proof. It was proven in [5] that

A(α) = lim
N

[
E ln �

(∑
σN+1

exp

(
β

P2α∑
ν=1

J ′
νσkν

σN+1

))
− E ln �(exp −β(H ′

N(α/N)))

]
(5)

where the quenched variables in H ′ are independent of those in �, just like for the first term
on the right-hand side. The second term on the right-hand side is easy to compute, at least in
principle [5], and it is the derivative of A multiplied by α, because

E ln �(exp −β(H ′
N(α/N))) = NA(α(1 + 1/N) − NA(α).

This leads to the result to prove, as the gauge invariance of � allows us to take out the sum
over σN+1 as ln 2, and therefore the first term on the right-hand side of (5) is precisely ψ .

�

It is easy to see [5] by direct calculation that

∂1ψN(α′, α) = 2
∑

n

θ2n

2n
(1 − 〈q1···2n〉′) (6)

A′(α) =
∑

n

θ2n

2n

(
1 − 〈

q2
1···2n

〉)
. (7)

5
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From the theorem above we have then

A′(α) = ∂1ψ(α, α) + ∂2ψ(α, α) − A′(α) − αA′′(α).

But we know [4] that near the critical point saturation 〈q2n〉′ → 〈
q2

2n

〉
occurs in the

thermodynamic limit, so that ∂1ψ(α, α) → 2A′(α) and therefore we have just proven the
next.

Proposition 2. In the thermodynamic limit

∂2ψ(α, α) − αA′′(α) = 0. (8)

Note that if in the statement of theorem 1 we assumed saturation 〈q1···2n〉′t → 〈
q2

1···2n

〉
not

just for t = 1 but for all t (once ψ(tα, α) is written using (6) as the integral of its derivative
with respect to t), we would obtain ψ = 2A′ and

A(α) = αA′(α) + ln 2

which, as the initial condition is easily checked to be A′(0) = ln cosh β, gives the well-known
replica symmetric solution A(α) = ln 2 + α ln cosh β. This means that stability and saturation
of the overlaps are equivalent to the replica symmetry.

Now let us analyze (8). We consider ψ(α′, α) as the integral of its derivative with respect
to its first argument. The derivative, given in (6), contains the perturbed averaged overlaps,
which we expand using (2) and (3), etc. In these expansions the variable α′ appears only
explicitly in front of the averaged overlap monomials, which do not depend on α′, they only
depend on α. Therefore we can perform explicitly the integration of these simple power series
in α′. The dependence on α of ψ(α′, α) is hence only in the averaged overlap monomials,
and the same holds for A′(α), because of (7). Therefore the derivatives of ψ(α′, α) and A′(α)

with respect to α in (8) involve only the averaged overlap monomials. In other words if we
define Ã(α′, α) = ln 2 + ψ(α′, α) − α′A′(α), so that A(α) = Ã(α, α) thanks to theorem 1,
equation (8) amounts to say that ∂2Ã(α, α) = 0. But since the second argument appears only in
the averaged overlap monomials, we can consider A(α) = Ã(α, α) ≡ Â(α, p1(α), p2(α), . . .)

as a function of the averaged overlap monomials, here called p1(α), p2(α), . . ., such that

∂2Ã =
∑
m

∂Â

∂pm

dpm

dα
= 0. (9)

We can now use (2) and (3), etc to have an explicit expansion of A(α) and deal with the
differential equation (9). The result is easy to obtain and reads

A(α) = ln 2 +
τ

2
− τ

4
(τ − 1)

〈
q2

12

〉
+

τ 3

3
〈q12q23q13〉 + O(q4)

+ θ2

(
τ

4
− τ

8
(τθ2 − 1)

〈
q2

1234

〉 − 3τ 3

4
〈q1234q12q34〉 + O(q4)

)
+ O(θ4). (10)

Note that this expansion extends that found in [13]. In a first approximation, assuming a
second-order transition so to have small overlaps, we may consider, for small τ − 1,

A(α) ∼ ln 2 +
τ

2
− τ

4
(τ − 1)

〈
q2

12

〉
+

τ 3

3
〈q12q23q13〉

and (9) becomes

−1

4
(τ − 1)

d
〈
q2

12

〉
dα

+
1

3

d〈q12q23q31〉
dα

= 0 (11)

6
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because

Â

∂
〈
q2

12

〉 = −τ

4
(τ − 1) ∼ −1

4
(τ − 1)

Â

∂〈q12q23q31〉 = τ 3

3
∼ 1

3
.

But now the use of (4) in (11) offers

−1

4
(τ − 1)

d
〈
q2

12

〉
dα

+
1

3

1

2

d(τ − 1)
〈
q2

12

〉
dα

= 0

from which, after a couple of elementary steps

(τ − 1)
d
〈
q2

12

〉
d(τ − 1)

− 2
〈
q2

12

〉 = 0.

This equation becomes exact when the temperature is sufficiently close to the critical one,
τ ∼ 1, and the solution is easy to find:〈

q2
12

〉 ∝ (τ − 1)2

describing the critical behavior of the overlap slightly below the critical temperature. The
critical exponent is hence two.

Note that (4) implies that 〈q12q23q31〉 is zero above the temperature 1/β2 and positive
slightly below. Moreover, (4) gives the critical exponent for 〈q12q23q31〉: three.

From our analysis in the previous sections, we conclude that the critical exponent of q2
1234

is strictly larger than three, but no larger than four. The criterion explained in the section on
the order of magnitudes, together with 4 and the critical exponent of q2

12, provides a relation
between the degree of an overlap monomial and its critical exponent: degree 2m corresponds
to critical exponent m. So for instance the critical exponent of q2

1···2n, which is of order 4n,
is 2n. In the infinite connectivity limit we recover all the critical exponents for the fully
connected Gaussian SK model [1].

Remark. If we extended the use of 〈q1···2n〉′ → 〈
q2

1···2n

〉
to lower temperatures, such that

2αθ2n ≡ τ2n ∼ 1, we would obtain for q2
1···2n, for all n, the same identical differential equation

we got for q2
12. We would then get the same approximated behavior one gets using the replica

method in a quadratic approximation [13]: q2
2n would be zero above the temperature such that

τ2n = 1, then it starts fluctuating, with critical exponent two. It is therefore interesting to
note that in this sense the replica method with the quadratic approximation is equivalent to
extending stochastic stability below the critical point.

8. Summary and conclusions

Our strategy requires the expansion of the averaged overlaps in powers of a perturbing
parameter with stochastically stable overlap monomials as coefficient (similarly to the
expansion exhibited in [2] for Gaussian models). This allowed us to write the free energy
in terms of overlap fluctuations and to discover that it does not depend on a certain family
of these monomials. As a consequence, we obtained a differential equation whose solution,
once all small terms are neglected, gave the critical behavior of the overlaps. The strategy can
clearly be adapted, in an even simpler form, when the interaction is ferromagnetic, i.e. in the
case of dilute mean-field ferromagnet [7], and such a simplified approach easily recovers—
once further simplified [3], in the infinite connectivity limit—the well-known results for the
Curie–Weiss model of a fully connected mean-field ferromagnet [9].

7
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Our method works for second-order transitions and is ultimately based on stochastic
stability, but such a stability is proven or at least believed to hold in several contexts, therefore
generalizations of our method to finite-dimensional spin glasses, to the traveling salesman
problem, to the K-SAT problem, to neural networks and to other cases are not to be excluded
and are being studied. We plan on reporting soon on these topics.

Acknowledgments

The authors are extremely grateful to Peter Sollich for priceless remarks. AB is supported
by MIUR/Smart-Life Project (Ministry Decree 13/03/2007 n 368) and Calabria Region—
–Technological Voucher contract no. 11606. LDS ackowledges partial support by the
CULTAPTATION project (European Commission contract FP6-2004-NEST-PATH-043434).

Appendix A. Cavity approach

In this appendix we summarize some of the basic ideas of the cavity approach, which is at the
basis of the tools we introduce in section 3 to be then used to split the free energy into two
pieces in section 7. Here we just provide a brief summary, the interested reader may find more
on the cavity approach to dilute mean-field spin glasses in [4].

The thermodynamic limit of the free energy density exists if and only if the sequence of
the increments (due to the addition of a particle to the system) is convergent in the Cesàro
sense (indicated by a boldface C):

lim
N→∞

1

N
E ln ZN ≡ lim

N→∞
1

N

N−1∑
n=0

E ln
Zn+1

Zn

≡ C lim
N→∞

E ln
ZN+1

ZN

.

The idea at the basis of the cavity approach is in fact to measure the effect on the free energy of
the addition of one spin to the system. We will denote by σ the configuration of N given spin,
and we will add a spin σN+1 to this system. Now, following [5], we can write, in distribution,

− HN+1(σ, σN+1;α) ∼
P

α N2
N+1∑

ν=1

Jνσiν σjν
+

P
α 2N

N+1∑
ν=1

J̃ νσkν
σN+1 (A.1)

where we have neglected a third term which does not contribute when N is large [5], {J̃ ν} are
independent copies of J ; {iν}, {jν}, and {kν} are independent random variables all uniformly
distributed over {1, . . . , N}. Note that we can also write, in distribution,

HN+1(σ, σN+1;α) ∼ HN(σ ; α̃) + h̃σ σN+1 (A.2)

where

α̃ = α
M

M + 1
h̃σ = −

P2α̃∑
ν=1

J̃ νσkν
.

Clearly α̃ → α as N → ∞. The field h̃ is called cavity field, and note that the connectivity
degree appearing in it is twice the degree of connectivity of the random graph α. It is now clear
in what sense the field h̃, which can be seen as a perturbation, gives place to the addition of a
new spin, as discussed in section 3. It is interesting to study how the systems react to a field
of a slightly more general form: h′ = −∑P2α′

ν=1 J̃ νσkν
, which is precisely what appears in the

function ψ introduced in section 3. In this paper we make use of a result that is presented in [4],
and then used in [6] to explore its consequences from the point of view of stochastic stability

8
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and more generally self-averaging (see [6] and references therein for a study of stochastic
stability and self-averaging in dilute spin glasses). Here we report for convenience only the
main statement which is of interest for the present work. The expectation of an overlap
monomial Q such that each replica appears an even number of times in it is not affected
by the perturbation introduced above: 〈Q〉′ = 〈Q〉, according to the notations introduced in
section 3. Overlaps of the type just described are called filled, and we just stated that they
are stochastically stable under the cavity perturbation. The result we just mentioned does not
hold for other overlap monomials, but their perturbed average can be computed through an
expansion in terms of stochastically stable overlap monomials. This is studied in details in
[4], but the main formula is reported in section 3.
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